Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0436

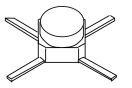
MSA-0436

>6V Fixed Gain, 12 dBm General Purpose Amplifier

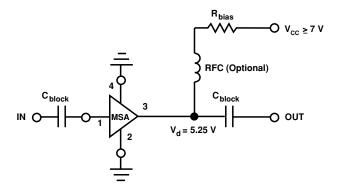
MSA-0436 Cascadable Silicon Bipolar MMIC Amplifiers

Data Sheet

Description


The MSA-0436 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz $f_{T}, 25~{\rm GHz}~f_{MAX},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 3.8 GHz
- 12.5 dBm Typical P_{1 dB} at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0436 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]		
Device Current	100 mA		
Power Dissipation ^[2,3]	650 mW		
RF Input Power	+13 dBm		
Junction Temperature	150°C		
Storage Temperature ^[4]	-65 to 150°C		

Thermal Resistance^[2,5]:

 $\theta_{\rm jc} = 140^{\circ}{\rm C/W}$

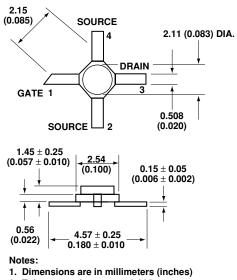
Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$ 3. Derate at 7.1 mW/°C for $T_C > 109^{\circ}C.$
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of q_{jc} than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I _d = 50 mA, Z ₀ = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	7.5	8.5	9.5
ΔG_P	Gain Flatness	f = 0.1 to 2.5 GHz	dB		±0.6	±1.0
f _{3 dB}	3 dB Bandwidth		GHz		3.8	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.4:1	
VSWK	Output VSWR	f = 0.1 to 2.5 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		25.5	
tD	Group Delay	f = 1.0 GHz	psec		125	
Vd	Device Voltage		V	4.75	5.25	5.75
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:


1. The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0436-BLKG	100	Bulk		
MSA-0436-TR1G	1000	7" Reel		

 $\mathbf{2}$

36 micro-X Package Dimensions

2. Tolerances: in .xxx = \pm 0.005

mm .xx = \pm 0.13

